Developing Web-Enabled Decision Support Systems
Using Access, VB .NET, and ASP .NET

Abhijit A. Pol
Computer and Information Science and Engineering
University of Florida, Gainesville

Ravindra K. Ahuja
Industrial and Systems Engineering
University of Florida, Gainesville
and
Innovative Scheduling, Inc., Gainesville

Di
Dynamic Ideas
Belmont, Massachusetts
Abhijit dedicates this book to his model-base: his father, Ashok; to his knowledge-base: his mother, Anagha; and to his data-base: his brother Amit.

Ravi dedicates this book to his favorite decision support network: Smita, Saumya, and Shaman.

Together, we dedicate this book to Professor Don Hearn, who inspired us to write books on decision support systems and remained a constant source of encouragement throughout their evolution.
Contents

PREFACE xv

PART I Principles of Good Database Design 1

CHAPTER 1 Introduction 3

1.1 Introduction 000
1.2 Defining a Decision Support System 000
1.3 Web-enabled Decision Support Systems 000
1.4 Decision Support Systems Applications 000
1.5 Textbook Overview 000
1.6 Summary 000
1.7 Exercises 000

CHAPTER 2 Introduction to Databases 000

2.1 Introduction 000
2.2 Data, Information, and Metadata 000
2.3 File-Based Approach 000
2.4 Database Approach 000
2.5 Database Development Process 000
2.6 Database Models 000
2.7 Summary 000
2.8 Exercises 000

CHAPTER 3 Entity Relationship Modeling 000

3.1 Introduction 000
3.2 The Entity-Relationship Model 000
3.3 Entity 000
3.4 Attributes 000
3.5 Relationships 000
3.6 Degree of a Relationship 000
Chapter 3: Entity-Relationship Modeling

- 3.7 Cardinality of a Relationship
- 3.8 Unary Relationship
- 3.9 Binary Relationship
- 3.10 Ternary Relationships
- 3.11 Attributes of Relationships
- 3.12 Associative Entities
- 3.13 Weak Entity Types
- 3.14 Enhanced Entity-Relationship Modeling
- 3.15 Superclass, Subclass, and Relationships
- 3.16 Generalization and Specialization Process
- 3.17 Participation and Disjoint Constraints
- 3.18 Superclass/Subclass Hierarchy
- 3.19 Case Study: Conceptual Design for University Database
- 3.20 In-Class Assignment
- 3.21 Summary
- 3.22 Exercises

Chapter 4: Relational Data Modeling and Normalization

- 4.1 Introduction
- 4.2 The Relational Data Model
- 4.3 Relational Keys
- 4.4 Relational Data Integrity Constraints
- 4.5 Transforming E-R Diagrams into Relational Schemas
- 4.6 Case Study: Logical Design for a University Database
- 4.7 Introduction to Normalization
- 4.8 Data Redundancy
- 4.9 Database Anomalies
- 4.10 Functional Dependencies
- 4.11 Forms of Normalization
- 4.12 In-Class Assignment
- 4.13 Summary
- 4.14 Exercises

Part II: Database Development with Microsoft Access

- 5.1 Introduction
- 5.2 The Architecture of Microsoft Access
- 5.3 Access Development Environment
- 5.4 Exploring Tables
- 5.5 Relationships
- 5.6 Exploring Queries
- 5.7 Getting Access Help
- 5.8 Summary
- 5.9 Exercises
<table>
<thead>
<tr>
<th>CHAPTER 6</th>
<th>Access Tables: Building Data Foundation</th>
<th>000</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>000</td>
</tr>
<tr>
<td>6.2</td>
<td>Hands-On Tutorial: Creating Access Tables in the Datasheet View</td>
<td>000</td>
</tr>
<tr>
<td>6.3</td>
<td>Hands-On Tutorial: Creating Access Tables in the Design View</td>
<td>000</td>
</tr>
<tr>
<td>6.4</td>
<td>Field Data Types</td>
<td>000</td>
</tr>
<tr>
<td>6.5</td>
<td>Field Properties</td>
<td>000</td>
</tr>
<tr>
<td>6.6</td>
<td>The Lookup Wizard</td>
<td>000</td>
</tr>
<tr>
<td>6.7</td>
<td>Defining a Primary Key</td>
<td>000</td>
</tr>
<tr>
<td>6.8</td>
<td>Creating Access Tables by Using Import Wizard</td>
<td>000</td>
</tr>
<tr>
<td>6.9</td>
<td>Working with Table Properties</td>
<td>000</td>
</tr>
<tr>
<td>6.10</td>
<td>In-Class Assignment</td>
<td>000</td>
</tr>
<tr>
<td>6.11</td>
<td>Summary</td>
<td>000</td>
</tr>
<tr>
<td>6.12</td>
<td>Exercises</td>
<td>000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 7</th>
<th>Relationships: Linking Access</th>
<th>000</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>000</td>
</tr>
<tr>
<td>7.2</td>
<td>Defining Relationships in the Relationships Window</td>
<td>000</td>
</tr>
<tr>
<td>7.3</td>
<td>Hands-On Tutorial: Defining Relationships in Access</td>
<td>000</td>
</tr>
<tr>
<td>7.4</td>
<td>Working with Existing Relationships</td>
<td>000</td>
</tr>
<tr>
<td>7.5</td>
<td>Field Properties</td>
<td>000</td>
</tr>
<tr>
<td>7.6</td>
<td>In-Class Assignment</td>
<td>000</td>
</tr>
<tr>
<td>7.7</td>
<td>Summary</td>
<td>000</td>
</tr>
<tr>
<td>7.8</td>
<td>Exercises</td>
<td>000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 8</th>
<th>Queries: Building Application Foundation</th>
<th>000</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>000</td>
</tr>
<tr>
<td>8.2</td>
<td>Working with Select Queries</td>
<td>000</td>
</tr>
<tr>
<td>8.3</td>
<td>Queries with Multiple Tables (The Join Operation)</td>
<td>000</td>
</tr>
<tr>
<td>8.4</td>
<td>Working with Operators</td>
<td>000</td>
</tr>
<tr>
<td>8.5</td>
<td>Hands-On Tutorial: A Select Query with Join of Multiple Tables</td>
<td>000</td>
</tr>
<tr>
<td>8.6</td>
<td>Using Total Row (The GroupBy Operation)</td>
<td>000</td>
</tr>
<tr>
<td>8.7</td>
<td>Creating Calculated Fields</td>
<td>000</td>
</tr>
<tr>
<td>8.8</td>
<td>Parameter Queries</td>
<td>000</td>
</tr>
<tr>
<td>8.9</td>
<td>Crosstab Queries</td>
<td>000</td>
</tr>
<tr>
<td>8.10</td>
<td>Action Queries</td>
<td>000</td>
</tr>
<tr>
<td>8.11</td>
<td>Update Queries</td>
<td>000</td>
</tr>
<tr>
<td>8.12</td>
<td>Delete Queries</td>
<td>000</td>
</tr>
<tr>
<td>8.13</td>
<td>Append Queries</td>
<td>000</td>
</tr>
<tr>
<td>8.14</td>
<td>In-Class Assignment</td>
<td>000</td>
</tr>
<tr>
<td>8.15</td>
<td>Summary</td>
<td>000</td>
</tr>
<tr>
<td>8.16</td>
<td>Exercises</td>
<td>000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 9</th>
<th>SQL: Creating & Processing RDBs</th>
<th>000</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>000</td>
</tr>
<tr>
<td>9.2</td>
<td>Types of SQL Statements</td>
<td>000</td>
</tr>
</tbody>
</table>
Contents

9.3 The Data Definition Language (DDL) 000
9.4 The Data Manipulation Language (DML) 000
9.5 The SELECT Statement 000
9.6 The INSERT Statement 000
9.7 The DELETE Statement 000
9.8 The UPDATE Statement 000
9.9 Summary 000
9.10 In-Class Assignment 000
9.11 Exercises 000

Part III Windows Application Development with VB .NET 000

CHAPTER 10 Introduction to Visual Studio 000
10.1 Introduction 000
10.2 Exploring Visual Studio IDE 000
10.3 Visual Studio IDE Windows 000
10.4 Object-Naming Conventions 000
10.5 A Look at the VB .NET’s Code Window 000
10.6 The Object Browser 000
10.7 In-Class Assignment 000
10.8 Summary 000
10.9 Exercises 000

CHAPTER 11 Visual Basic .NET Programming Language 000
11.1 Introduction 000
11.2 Visual Basic Statements 000
11.3 InputBox and MessageBox 000
11.4 Visual Basic Data Types 000
11.5 Adding Windows Forms and Setting Start-up Form 000
11.6 Control Structures 000
11.7 Arithmetic, Logical, and String Operators 000
11.8 Arrays 000
11.9 Multi-Dimensional Arrays 000
11.10 Dynamic Arrays 000
11.11 Code Debugging 000
11.12 In-Class Assignment 000
11.13 Summary 000
11.14 Exercises 000

CHAPTER 12 Objects and Procedures 000
12.1 Introduction 000
12.2 Procedures 000
12.3 Subroutine Procedures 000
12.4 Function Procedures 000
12.5 Visual Basic Modules 000
12.6 Visual Basic Classes 000
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.4 Hands-On Tutorial: Displaying Data on a Form with Multiple Parameters</td>
<td>000</td>
</tr>
<tr>
<td>15.5 Hands-On Tutorial: Displaying Data on a Form from Join of Multiple Tables</td>
<td>000</td>
</tr>
<tr>
<td>15.6 Hands-On Tutorial: Displaying Data Using Existing MS Access Query</td>
<td>000</td>
</tr>
<tr>
<td>15.7 Hands-On Tutorial: Passing Data between Forms in a Windows Application</td>
<td>000</td>
</tr>
<tr>
<td>15.8 DataSets</td>
<td>000</td>
</tr>
<tr>
<td>15.9 Inserts, Updates, and Deletes in a Windows Application</td>
<td>000</td>
</tr>
<tr>
<td>15.10 Hands-On Tutorial: Updating Changes to Multiple Tables in the Database</td>
<td>000</td>
</tr>
<tr>
<td>15.11 In-Class Assignment</td>
<td>000</td>
</tr>
<tr>
<td>15.12 Summary</td>
<td>000</td>
</tr>
<tr>
<td>15.13 Exercises</td>
<td>000</td>
</tr>
</tbody>
</table>

CHAPTER 16 Crystal Reports

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1 Introduction</td>
<td>000</td>
</tr>
<tr>
<td>16.2 Crystal Report Primer: A Simple Student Report</td>
<td>000</td>
</tr>
<tr>
<td>16.3 Crystal Report Sections</td>
<td>000</td>
</tr>
<tr>
<td>16.4 Customizing Reports: Exploring the Design Environment</td>
<td>000</td>
</tr>
<tr>
<td>16.5 Properties of a CrystalReportViewer Control</td>
<td>000</td>
</tr>
<tr>
<td>16.6 Hands-On Tutorial: Creating a Pie-Chart to Display Faculty Salaries</td>
<td>000</td>
</tr>
<tr>
<td>16.7 Hands-On Tutorial: Creating a Crystal Report Based on Multiple Tables</td>
<td>000</td>
</tr>
<tr>
<td>16.8 Hands-On Tutorial: Creating Parameterized Crystal Reports</td>
<td>000</td>
</tr>
<tr>
<td>16.9 In Class Assignments</td>
<td>000</td>
</tr>
<tr>
<td>16.10 Summary</td>
<td>000</td>
</tr>
<tr>
<td>16.11 Exercises</td>
<td>000</td>
</tr>
</tbody>
</table>

Part IV Web Application Development with ASP .NET

CHAPTER 17 Web Introduction and Essential HTML

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1 Introduction</td>
<td>000</td>
</tr>
<tr>
<td>17.2 Internet, Web, and Related Terminologies</td>
<td>000</td>
</tr>
<tr>
<td>17.3 HyperText Markup Language (HTML)</td>
<td>000</td>
</tr>
<tr>
<td>17.4 Essential Text Formatting</td>
<td>000</td>
</tr>
<tr>
<td>17.5 HTML Hyperlinks</td>
<td>000</td>
</tr>
<tr>
<td>17.6 Page Backgrounds</td>
<td>000</td>
</tr>
<tr>
<td>17.7 Adding Graphics to Web Pages</td>
<td>000</td>
</tr>
<tr>
<td>17.8 Structuring Web Pages Using HTML Tables</td>
<td>000</td>
</tr>
<tr>
<td>17.9 Using Visual Studio’s Design View: WYSIWYG</td>
<td>000</td>
</tr>
<tr>
<td>17.10 Web Form and HTML Controls</td>
<td>000</td>
</tr>
<tr>
<td>17.11 In Class Assignments</td>
<td>000</td>
</tr>
<tr>
<td>17.12 Summary</td>
<td>000</td>
</tr>
<tr>
<td>17.13 Exercises</td>
<td>000</td>
</tr>
</tbody>
</table>
CHAPTER 18 Introduction to ASP.NET

18.1 Introduction
18.2 ASP.NET Primer: Sum of N Numbers
18.3 Hands-On Tutorial: Currency Conversion Example
18.4 Extending the Currency Conversion Example-The AutoPostBack Property
18.5 Using the Page_Load Event and IsPostBack Property
18.6 Working with the Page Directive
18.7 Validation Controls
18.8 Passing Parameters through URL
18.9 User-Defined Controls
18.10 In Class Assignments
18.11 Summary
18.12 Exercises

CHAPTER 19 Database Connectivity in Web Applications

19.1 Introduction
19.2 Connecting to the Access Database Using the Server Explorer Window
19.3 Hands-On Tutorial: Displaying Data on a Web Page
19.4 Reconfiguring SQL Query in an AccessDataSource
19.5 Paging, Sorting, and Data Manipulation in a GridView Control
19.6 Hands-On Tutorial: Displaying Data on a Web Page from a Query with a Join of Multiple Tables
19.7 Hands-On Tutorial: Displaying Data-Bind Images in a GridView Control
19.8 Hands-On Tutorial: Adding Look-up and Filter Functionalities to a Web Page
19.9 Hands-On Tutorial: Displaying Related Data in a DetailsView Control
19.10 Hands-On Tutorial: Working with the Repeater Control
19.11 Web-based Crystal Reports
19.12 Programatically Accessing the Database at Run-Time
19.13 In-Class Assignment
19.14 Summary
19.15 Exercises

Part V Case Studies

CASE STUDY 1 Online Book Store

CS1.1 Introduction
CS1.2 Application Functionalities and Assumptions
CS1.3 The Master Page
CS1.4 The Index Page
CS1.5 The Shopping Cart Page
CS1.6 The Login Page
CS1.7 The Checkout Page
Contents

CASE STUDY 2 Portfolio Management and Optimization

- CS2.1 Introduction 000
- CS2.2 Application Functionalities and Assumptions 000
- CS2.3 The Master Page 000
- CS2.4 The Index Page 000
- CS2.5 The Personal Information Page 000
- CS2.6 The Stock Comparison Page 000
- CS2.7 The Portal Page 000
- CS2.8 Portfolio Operations 000
- CS2.9 The Optimization Page 000
- CS2.10 Summary 000
- CS2.11 Extensions 000

CASE STUDY 3 Television Advertisement Allocation

- CS3.1 Introduction 000
- CS3.2 Application Functionalities 000
- CS3.3 The Channel Information and Program Information Page 000
- CS3.4 The Customer Preferences Form 000
- CS3.5 The Advertisement Allocation Page 000
- CS3.6 Summary 000
- CS3.7 Extensions 000

CASE STUDY 4 Voyage Prophesy

- CS4.1 Introduction 000
- CS4.2 Application Functionalities 000
- CS4.3 The Startup Form, User Controls, and MapPoint Reference 000
- CS4.4 The Search Form 000
- CS4.5 The Show Map Form 000
- CS4.6 The Drivelt Form 000
- CS4.7 The Direction Form 000
- CS4.8 Summary 000
- CS4.9 Extensions 000

CASE STUDY 5 ADO .NET and MS Excel

- CS5.1 Introduction 000
- CS5.2 Forecasting Methods: Background and Theory 000
- CS5.3 Forecasting Methods: Application Functionalities and Assumptions 000
- CS5.4 Setting up the Parameter Input Form and the Excel Sheet 000
- CS5.5 The Code Behind the Parameter Input Form 000
- CS5.6 Dynamic Production Problem (DPP) Application 000
- CS5.7 DPP: Setting up the Parameter Input Form and the Excel Sheet 000
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS5.8</td>
<td>DPP: The Code Behind the Parameter Input Form</td>
<td>000</td>
</tr>
<tr>
<td>CS5.9</td>
<td>Summary</td>
<td>000</td>
</tr>
<tr>
<td>CS5.10</td>
<td>Application Extensions</td>
<td>000</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>000</td>
</tr>
<tr>
<td></td>
<td>ABOUT THE AUTHORS</td>
<td>000</td>
</tr>
<tr>
<td></td>
<td>INDEX</td>
<td>000</td>
</tr>
</tbody>
</table>
Preface

OVERVIEW

- Motivation
- Book Contents
- Required Background
- Suggestions for Instruction
- Website Contents
- Acknowledgements

Motivation

Developing Web-Based Decision Support Systems is intended to be a textbook that describes database design and development, illustrates the programming topics (basic as well as advanced) in Visual Basic .NET and database connectivity, demonstrates web-enabling using ASP .NET, and applies these techniques to building decision support systems arising in several disciplines. This book can also be used as a supplementary reference book for courses or as a self-study manual by practitioners.

Information systems based on decision models are called *Decision Support Systems* (DSS). A DSS uses the data residing in databases, models it, processes or analyzes it using problem-specific methodologies, and assists the user in the decision-making process through a graphical user interface. Industrial Engineering and Operations Research (IE/OR) and business school
graduates are frequently being employed in positions that require developing DSS. We believe that decision support systems will gain widespread popularity in the future, and knowing how to develop such systems will make our students highly desirable in the workplace.

IE/OR departments and business schools teach their students decision models-based courses that impart spreadsheet modeling, optimization, and simulation skills. Most of these departments require their students to take a computer-programming course, often in C++, Java, or Visual Basic (VB). Several departments require their students to take a database course as well. Thus, students acquire background in modeling, optimization, simulation, database, and programming, but there are no courses that teach students how to integrate the technologies learned in these different courses to build complete decision support systems. Students are given many components, but they cannot assemble them into a complete package suitable for use by a customer. Decision support systems combine these technologies, and teaching how to build such systems is ideally suited to be an integral part of the IE/OR and business school curriculum.

Developing courses that teach our students how to build decision support systems has been a demanding task so far, since it requires the availability of platforms that allow the integration of various technologies (data, models, and programming). However, in the past decade, several platforms that allow such integration have become available. One such platform is Microsoft’s .NET technology.

The Visual Basic .NET (VB .NET) package of the .NET platform can be used in conjunction with Microsoft Access databases to build Windows-based, single-user database applications. The Microsoft Access database allows data storage, and VB .NET—an easy-to-learn yet powerful object-oriented programming (OOP) language—provides a mechanism for data analysis, implementing optimization and simulation models, and building graphical user interfaces. Further, web programming has also become easier with the introduction of Active Server Pages .NET (ASP .NET). This .NET package makes use of standard HyperText Markup Language or HTML (the front-end) and VB .NET (the back-end) to deploy elegant and easy-to-build database-connected, web-enabled applications. Another powerful .NET package is Crystal Report .NET. The Crystal Report package provides an ideal environment for creating reports and charts that can effectively summarize data. Thus, we have developed a complete set of course material in the Access and .NET framework for a course on Web-Enabled Decision Support Systems. This textbook is a byproduct of this effort. One can alternatively build spreadsheet-based decision support systems using the Microsoft Excel spreadsheet package, which is the subject of our parallel effort and which led to the companion book, “Developing Spreadsheet-Based Decision Support Systems,” by Michelle M.H. Seref, Ravindra K. Ahuja, and Wayne L. Winston.

The DSS development skills are important to all IE/OR and business school graduates for several reasons. First, having these skills will allow them to develop simple tools that might increase their productivity. Second, many graduates will be involved in information systems development during their career, and having a better understanding of the underlying technology will allow them to play a more useful role in the development process. Third, our graduates can develop a prototype system using the techniques learned here to establish the system proof-of-concept before it is turned over to the professional programmers. Fourth, several graduates are often employed in departments that are service organizations catering to the modeling and optimization needs of other departments such as manufacturing, sales, marketing, accounting, and purchasing. These departments often request decision tools to be built to meet their business needs. The users in this department are not modeling experts, and the mathematical complexity of these models becomes an impediment to their use. If our graduates are well versed in the DSS building process, they can build optimization and simulation models and package these models within friendly interfaces so that the modeling complexity is hidden from the user. This will make modeling and optimization approaches more popular in the workplace. Finally, with
data mining becoming increasingly important, industries are realizing a critical need for persons who understand data, models, algorithms, and IT, and our graduates can fulfill this need. Our students possess modeling and algorithmic skills to analyze the data but lack information systems development skills, and providing them these skills will make them ideally suited for this task.

Book Contents

Building a web-enabled, data-driven decision support system requires four skills: knowledge of database design, database development, database programming language, and web programming. We also need to illustrate through some practical applications how to build such decision support systems. Currently, there are no books available on the market that covers all of the five areas. Our book is intended to meet this need. There are five parts of this textbook: learning database design; getting familiar with database development with Microsoft Access; learning how to program with VB.NET and build Windows-based database applications; making them web-enabled with ASP.NET; and learning how to develop DSS applications through several case studies.

Part I—Principles of Good Database Design

We start this part of the book with an introduction to decision support systems and an introduction to databases (Chapter 1 and 2). We then cover principles of good database design. The database design process primarily involves two kinds of data modeling: Object-Based Modeling and Record-Based Modeling. The entity-relationship (E-R) model—an object-based data model—describes the data in the form of an E-R diagram, entities, attributes, and relationships and is the subject of Chapter 3. The Relational data model—a record-based data model—is based on the mathematical concept of relations and uses tables (or relations) to represent data and relationships and is the subject of Chapter 4.

Part II—Database Development using MS Access

This part of the book introduces the database development process using the Microsoft Access package. In Chapter 5, we provide a tour of Access’s development environment. We introduce the development window, various menus and toolbars, and the architecture of Access and its main components. In Chapter 6, we give a detailed explanation of Access tables, the central element of relational databases. Access tables store data and provide an effective grid structure for data organization. We also discuss how to design and modify Access tables in this chapter. Chapter 7 is dedicated to relationships among Access tables. Once we have populated them with data, we can query tables to retrieve useful information. We do this through Access queries, which are the subject of Chapter 8. Chapter 9 introduces SQL, the standard language used to write database queries. We have also written two comprehensive chapters on Access Forms and Access Reports, which are available on the book website: www.dssbooks.com.

Part III—Developing Windows Applications using VB.NET

With potential uses of a database application in mind, we present VB.NET as a database programming language in this part of the book. We first introduce, in Chapter 10, the Visual Studio environment—Integrated Development Environment (IDE)—that provides all the tools we
need to develop a database application. In Chapter 11, we introduce VB .NET along with its program-
ing language constructs: variables, data types, control structures, operators, and arrays. Chapter 12 presents a discussion of the object-oriented support features of VB .NET, namely, Classes, Modules, Procedures, Methods, and Properties. In Chapter 13, we formally introduce Windows forms and controls. Forms and controls constitute the building blocks of a GUI. In Chapter 14, we discuss database connectivity using ADO .NET. In Chapter 15, we illustrate more advanced database connectivity topics. Finally, in Chapter 16, we introduce Crystal Reports, a powerful tool that can summarize data in the form of reports and graphs, and discuss its integration with Windows forms.

Part IV—Developing Web-based Applications using ASP .NET

The Internet era has taken information-sharing to new heights, allowing billions of users to share information on the World Wide Web (WWW). This development has created the need for web-enabled applications that are accessible to a large number of users over a network. Today’s information systems involving databases are pervasive, and a growing number of them are web-enabled. In this part of the book, we illustrate the process of developing web applications. We discuss Hyper Text Markup Language (HTML), a Web interface standard, in Chapter 17. We introduce a Web programming language, ASP .NET, in Chapter 18. We then introduce database connectivity in Web applications using VB .NET and ADO .NET in Chapter 19 to build a complete Web-enabled DSS.

Part V—Developing a Complete DSS—Case Studies

This part presents five fully developed DSS applications arising in IE/OR, business, and general engineering. These case studies walk through the complete process of developing a web-enabled decision support system. Through these case studies, students will learn how IE/OR and business techniques apply to real-life decision problems and how we can effectively use those techniques to build DSS applications. Our case studies include Online Book Store, Portfolio Management and Optimization, Television Advertisement Allocation, Voyage Prophesy, and ADO .NET and MS Excel. Each case study also lists extensions that students can do as additional projects or practice assignments. We have developed a few more case studies that are available on the book website: www.dssbooks.com. The space limitation did not permit us to include these case studies in this printed form of the book.

This book explains all topics through classical examples selected from IE/OR, business school, data management, and engineering curriculums. Each new concept or idea is illustrated through examples or hands-on tutorials and reinforced through exercises at the end of the chapter. Each chapter contains an in-class assignment, several review questions, and many hands-on exercises. We also have created an extensive list and description of student course projects (over 50 such projects), which will further enhance students’ learning experience. These projects are available at the book website.

Required Background

The book does not require any prior experience with databases and can be used as an introductory text for novices in database design, development, and implementation. For readers familiar with the design process and the Access environment, this book provides a comprehensive review of these topics.
Prior experience in programming is not mandatory to use this book. We instruct readers on how to create variables, define functions, use basic programming structures, and work with arrays using Visual Basic language. Readers will also learn how to create good graphical user interfaces in the Visual Studio environment. This material also includes several applications that may be considered “mini” DSS applications. Therefore, even for an experienced programmer, it is useful to review these chapters to strengthen the reader’s skills in using VB .NET and ASP .NET in the context of developing a DSS.

We hope that after learning the database background and application development material in Parts I–IV of the book, readers will be able to develop any of the case studies found in Part V. The case studies construct prototypes of data-driven, web-enabled decision support systems that are simple enough to be understood by undergraduates and complex enough to be reasonably accurate representatives of real-world problems. The case studies require that you have picked up good database design, development, and programming skills from Parts I–IV of the book.

Suggestions for Instruction

This book is primarily intended as a textbook for undergraduate and graduate students in the IE/OR and business school curriculums. This book can also be used as a reference book to supplement other textbooks in courses and as a self-study manual. DSS are great tools for consulting, and consultants can use the skills learned profitably in developing their consulting practice.

As a textbook, this book can be used in a variety of ways to teach different courses. It can be used to offer courses for undergraduate and graduate students. In an undergraduate-level course, instructors can cover topics at a slower pace. In a graduate-level course, instructors can spend less time on some topics such as programming basics or HTML, and focus more on case studies. Instructors can offer semester-long courses (covering all the material), or half-semester/quarter courses on either database design and development or Windows and Web application development.

The Web-enabled DSS course may be taught in different formats including or excluding several different chapters from our text. We propose that the general structure of the course begin by teaching database design and development to students to ensure that they are familiar with the databases; then teach VB .NET programming, database connectivity, and ASP .NET to show students how to work with Windows and Web-enabled database applications; the course should then end with a full discussion of decision support systems and instructing students how to combine their acquired database and programming skills to develop a DSS application. The text has been designed to follow this general course structure.

From our experience, it seems most productive to hold this course in a computer laboratory or require students to bring laptops to the class. We recommend that the instructor illustrate concepts, hands-on examples, or tutorials on the computer screen while students are watching them and trying to do them themselves on their computers. We suggest that the instructor end each class by conducting one of the hands-on examples or tutorials as an illustration of all the concepts taught in that class. We also recommend that there be a teaching assistant available to help students as they are doing the hands-on examples on their personal computers, while the instructor may illustrate the example simultaneously at the front of the class. We have found that students learn much more in this manner as they experiment with Access, VB .NET, and ASP .NET themselves along with the instructor, with the teaching assistant readily available to answer questions or address their difficulties.
In this suggested setting of a computer laboratory or class with laptops, we also suggest that the course be taught in two-hour sessions instead of one-hour sessions. This allows students enough time to set up their computers and instructors enough time to illustrate a full example during the class. The course material can be adjusted to teach semester long courses or half-semester/quarter courses. The material can be covered in different rigors and at different paces, and some of the material can be assigned for self-study.

We have discovered by teaching these courses over the years that students learn the most by doing course projects. Lectures teach them the technology and how to use it, but unless they apply it themselves to build complete systems, they do not assimilate the material. In addition, the process of developing a full system from conception to completion and seeing the fruits of their labor gives them tremendous satisfaction and confidence. Course projects may be done by teams of students, in which case they promote teamwork—an essential skill in any workplace. We have developed over 50 course projects from different application areas in IE/OR, business, and engineering curriculums. These projects are available at the book website. Course projects can be assigned on an individual basis or in groups depending on the course size and course format. Students can select a project from our list, or they can create their own project as long as it is sufficiently interesting and challenging. We require our students to present these projects before the entire class when completed. Many students have told us that doing these projects and building complete decision support systems was the most educative experience for them in the course. We can’t recommend them more highly!

Website Contents

We have developed a website for this textbook that contains valuable resources for both students and instructors. The URL of this website is: www.dssbooks.com

This website contains the following material:

- Database files, VB .NET and ASP .NET source code, and application files for all the Hands-On tutorials covered in all chapters
- PowerPoint presentations for all book chapters
- Source code and the complete application package including database files for all five case studies discussed in Part V of the book
- Additional case study chapters that could not be included in the book
- Database files for Hands-On exercises for required chapters
- Additional chapters on Access Forms and Reports that could not be included in the book
- A booklet containing about 50 student projects
- Sample course schedules

A Solutions Manual of the book is also available and will be provided to instructors offering courses using this book as the principle textbook. The website provides the email addresses for requesting the Solution Manual and giving your feedback to the book authors.
Acknowledgments

There are many people whom we would like to thank for making significant contributions to this book-writing project. First and foremost, we would like to thank Dr. Donald Hearn, Chair of the Industrial and Systems Engineering Department at the University of Florida, who has been the driving force in this book-writing initiative. He motivated us to teach courses that incorporate greater levels of information technology in the IE/OR curriculum at the University of Florida. He also inspired us to write this book and provided constant encouragement throughout its evolution from a concept to a reality. We are truly thankful to him for his encouragement and support.

Next, we would like to offer many thanks to Sandra Duni Eksioglu. Sandra received her doctorate in Industrial and Systems Engineering from the University of Florida and has been working with us since the inception of the project. She has developed several exercises, their solutions, and team projects for the book. Sandra has taken a lead role in organizing all the team projects into a booklet and in preparing the solutions manual for the book. Her hard work and dedication is much appreciated.

Several students of the Industrial and Systems Engineering, Computer Science, and English Departments at the University of Florida helped us in the development of the book at different stages. In particular, we would like to thank Margaret Reece and Padmavati Sridhar for the contributions they made in developing several exercises and their solutions for the book; and Krishna Jha, and Burak Eksioglu for developing several team projects. Our special thanks to the programming junta of Rakesh Desai, Siddharth Gaitonde, Kunal Gandhi, Tapasvi Moturu, and Mohammad Jaradat for the contributions they made in developing case studies and examples for the book. Ruben Galbraith assisted us in preparing the PowerPoint presentations for the book chapters, and we appreciate his help. We extend our sincere thanks to Dean Swinford, Tamara Johnston, Carolyn Houston, and Krystal Harriot for their copy editing of the text. We would also like to thank students of the DSS courses offered at the University of Florida who served as guinea pigs to test early versions of book chapters and gave valuable feedback. We are indeed indebted for their feedback. Several students who assisted us in the book-writing project were supported by the National Science Foundation Course Curriculum Development Grant 0341203.

Finally, we thank our families for their constant support and encouragement.

Abhijit A. Pol Ravindra
K. Ahuja@cn1:chapter
Decision support web-based system for construction innovation. E. K. Zavadskas, A. Kaklauskas, M. Viteikiene. Most of all calculators, analysers, software, decision support and expert systems, neural networks and on-line systems seek to find out how to make the most economic decisions and most of all these decisions are intended only for economic objectives. Alternatives under evaluation have to be evaluated not only from the economic position, but take into consideration qualitative, technical, technological and other characteristics as well. The model-base of a decision support system should include models that enable a decision-maker to do a comprehensive analysis of the available variants and to make a proper choice. Decision Support Systems (DSS) is an information system that assists the user in decision-making. A decision support system is an information system that assists the user in decision-making. Developing Web-Enabled Decision Support Systems DSS Development Process Data Storage Mechanism MS Excel, Lotus 123 MS Access, Oracle, MS SQL Server, Dbase Data Manipulation Visual Basic for Applications (VBA) Visual Basic .NET (VB.NET) Java, C/C++ Data Presentation VBA, VB .NET, MS Access, ASP .NET Java Applets JULY 9, 2004 INFORMS TEACHING MS WORKSHOP.