COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS

GEORGE E. FORSYTHE

MICHAEL A. MALCOLM

Department of Computer Science
University of Waterloo

CLEVE B. MOLER

Department of Mathematics and Statistics
University of New Mexico

PRENTICE-HALL, INC.

ENGLEWOOD CLIFFS, N. J. 07632
CONTENTS

PREFACE x

1 INTRODUCTION 1

1.1 Bibliography 2
1.2 About the programs in this book 7
 Problems 8

2 FLOATING-POINT COMPUTATION 10

2.1 Floating-point numbers 10
2.2 Calculation of machine epsilon 13
2.3 An example of round-off error 14
2.4 Instability of certain algorithms 16
2.5 Sensitivity of certain problems 17
2.6 Solving quadratic equations 20
 Problems 23

3 LINEAR SYSTEMS OF EQUATIONS 30

3.1 Linear systems for stored matrices 32
3.2 Condition of a matrix 41
3.3 Subroutines DECOMP and SOLVE 48
3.4 Large, sparse systems 56
 Problems 58
4 INTERPOLATION

4.1 Polynomial interpolation 64
4.2 Evaluation of polynomials 68
4.3 An example, Runge's function 69
4.4 Spline interpolation 70
4.5 Subroutines SPLINE and SEVAL 76

Problems 80

5 NUMERICAL INTEGRATION

5.1 The rectangle and trapezoid rules 85
5.2 Spline quadrature 89
5.3 Simpson's rule 91
5.4 Adaptive quadrature routines 92
5.5 Subroutine QUANC8 97

Problems 106

6 INITIAL VALUE PROBLEMS IN
ORDINARY DIFFERENTIAL EQUATIONS

6.1 The problem to be solved 110
6.2 Numerical solutions 112
6.3 Errors 114
6.4 Methods 119
6.5 Stiff equations 123
6.6 Boundary value problems 126
6.7 Choice of a subroutine 127
6.8 Subroutine RKF45 129

Problems 148

7 SOLUTION OF NONLINEAR EQUATIONS

7.1 Transcendental equations—real roots 156
7.2 Subroutine ZEROIN 161
7.3 Transcendental equations—complex roots 167
7.4 Zeros of polynomials 168
7.5 Nonlinear systems of equations 169

Problems 171
8 OPTIMIZATION 178
8.1 One-dimensional optimization 179
8.2 Subroutine FMIN 182
8.3 Optimization in many dimensions 188
 Problems 190

9 LEAST SQUARES AND THE SINGULAR VALUE DECOMPOSITION 192
9.1 Least squares data fitting 192
9.2 Orthogonality and the SVD 201
9.3 Applications 207
9.4 Computing the decomposition 218
9.5 Subroutine SVD 227
 Problems 236

10 RANDOM NUMBER GENERATION AND MONTE CARLO METHODS 240
10.1 Generation of uniformly distributed numbers 241
10.2 Subroutine URAND 245
10.3 Sampling from other distributions 247
 Problems 248

REFERENCES 250

INDEX 255
Intended primarily for a course in numerical computing, this text can be used as supplement to a more theoretical text in a numerical analysis course. The programs, subroutines, and exercises for the computer solution of problems involving matrices, integrals, differential equations, spline functions, zeros and extrema of functions, least squares, and Monte Carlo techniques. Intended primarily for a course in numerical computing, this text can be used as supplement to a more theoretical text in a numerical analysis course.