SEMANTIC COMPREHENSION OF LEXICAL CONTENT OF THE ENGLISH BOOK JACKETS

Anna Smoliana

ABSTRACT

The article deals with the peculiarities of organizing the information on the English book dust jackets, lexico-semantic properties of the language units and relations between the lexical items. The main semantic dimensions and semantic fields were identified considering the vocabulary of English book jackets. Application of the semantic analysis gave us proofs that language on the English book dust jackets is organized in a mental lexicon with particular semantic features that were demonstrated via semantic dimensions and semantic fields.

English book dust jacket is presented as an informational-advertising type comprising texts with their specific features. The mini-texts are organized in the informational blocks that reveal diverse functions. That's why it seems to be crucial to consider language units from different perspectives – lexical, semantic and cognitive and take a view at different kinds and types of meanings to show how they fit into the total composite effect of a book jacket lexicon.

The paper presents a first look at the semantic structure of the information associated with the vocabulary of the English book jackets and aims at analyzing the lexemes and attempt to organize them in the semantic fields. We conducted a semantic analysis and defined semantic fields created for getting general overview of a particular domain of content.

FULL TEXT:

PDF

DOI: http://dx.doi.org/10.19044/esj.2013.v9n29p%25p

European Scientific Journal (ESJ)

ISSN: 1857 - 7881 (Print)
ISSN: 1857 - 7431 (Online)

Contact: contact@eujournal.org

To make sure that you can receive messages from us, please add the 'eujournal.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

Publisher: European Scientific Institute, ESI.
ESI cooperates with Universities and Academic Centres on 5 continents.
conditional probability of the lexical-semantic classes. Where a bility distributions of SCFs given each test verb. Lexical-semantic verb classifications have proved useful in supporting various natural language processing (NLP) tasks. The largest and the most widely deployed classification in English is Levin's (1993) taxonomy of verbs and their classes. Table of Contents. Proceedings of the HLT-NAACL Workshop on Computational Lexical Semantics. Table of Contents. We have performed experiments with a lexicon composed of individual English words and also with a lexicon of individual words and selected phrases. The resulting lists can be used to compare the 'meaning' of conceptual units (individual words or frequently-occurring phrases) in different contexts and also can serve as features for machine learning approaches to classify semantic roles and relationships.
Lexical-semantic verb classifications have proved useful in supporting various natural language processing (NLP) tasks. The largest and the most widely deployed classification in English is Levin's (1993) taxonomy of verbs and their classes. While this resource is attractive... We use cookies to offer you a better experience, personalize content, tailor advertising, provide social media features, and better understand the use of our services. To learn more or modify/prevent the use of cookies, see our Cookie Policy and Privacy Policy. Accept Cookies. to the semantic class of the predominant sense of a verb. Although many of the test verbs are polysemic, we relied on the knowledge that the majority of English verbs have a single predominating sense in balanced corpus data. Lexical semantics relations play an essential role in lexical semantics and intervene at many levels in natural language comprehension and production. They are also a central element in the organization of lexical semantics knowledge bases. Most of the material presented here is borrowed from [Cru86]. Introduction. Congruence Relations. Two words W1 and W2 denoting respectively sets of entities E1 and E2, are in one of the following four relations: identity : E1 = E2, inclusion : E2 is included into E1, overlap : E1 and E2 have a non-empty intersection, but one is not included in the other, di...